
The Mixed-Valent Manganese [3 × 3] Grid
[Mn(III) 4Mn(II)5(2poap-2H) 6](ClO4)10‚10H2O, a Mesoscopic Spin- 1/2 Cluster

Oliver Waldmann,* ,† Hans U. Gu1del, † Timothy L. Kelly, ‡ and Laurence K. Thompson ‡

Department of Chemistry and Biochemistry, UniVersity of Bern, CH-3012 Bern, Switzerland, and
Department of Chemistry, Memorial UniVersity of Newfoundland,
St. John's, Newfoundland, A1B 3X7, Canada

Received November 30, 2005

The magnetic susceptibility and low-temperature magnetization curve of the [3 × 3] grid [Mn(III)4Mn(II)5(2poap-
2H)6](ClO4)10‚10H2O (1) are analyzed within a spin Hamiltonian approach. The Hilbert space is huge (4 860 000
states), but the consequent use of all symmetries and a two-step fitting procedure nevertheless allows the best-fit
determination of the magnetic exchange parameters in this system from complete quantum mechanical calculations.
The cluster exhibits a total spin S ) 1/2 ground state; the implications are discussed.

Introduction

The magnetism of polynuclear complexes containing
magnetic metal ions, often called molecular nanomagnets,
has captured the imagination of chemists and physicists alike.
In the chemical arena, the building of novel materials with
a functionality of potential interest for applications from a
“bottom up” approach has stimulated much effort. From the
physical perspective, these nanometer-sized magnetic clusters
have been demonstrated to exhibit many spectacular magnetic
quantum phenomena.1-4

The understanding of the magnetic properties of clusters
with multiple magnetic centers, which usually starts with an
analysis of the temperature dependence of the magnetic

susceptibilityø(T), is difficult with respect to the evaluation
of the exchange coupling constants. On one hand, the
structure of the complex at hand easily may suggest many
exchange parameters in the microscopic spin Hamiltonian,5

and frequently, even with the use of simplified models, this
leads to a heavily overparametrized situation concerning the
magnetic susceptibility. The only solution to this problem
is to obtain information from several complementary ex-
perimental techniques. On the other hand, the dimension of
the Hilbert space of the microscopic spin Hamiltonian
increases exponentially with the spin dimension of the
magnetic centers so that the (numerical) calculation of
magnetic properties quickly reaches the limits of today’s
computers. This is particularly true for the calculation ofø-
(T), since at higher temperatures essentially all energy levels
are thermally populated and hence contribute, so that the
full energy spectrum needs to be calculated. This is in
contrast to other techniques for determining the magnetic
parameters, for example, inelastic neutron scattering, which
typically are performed at low temperatures. Here, only a
small number of the low-lying states is involved which with
sparse-matrix diagonalization techniques can be obtained for
systems orders of magnitude larger than those accessible by
full diagonalization techniques.

In this work we analyze the magnetic susceptibility and
low-temperature magnetization curve of the mixed-valent
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manganese [3× 3] grid [Mn(III) 4Mn(II) 5(2poap-2H)6]-
(ClO4)10‚10H2O (1).6,7 The structure is shown in Figure 1.
The four spin-2 Mn(III) ions are located at the corners of
the grid, whereas the remaining five metal sites are occupied
by spin-5/2 Mn(II) ions. The Hilbert space of this cluster with
its almost 5 million states is discouragingly large. We will
show, however, that the subsequent use of all symmetries
of the appropriate exchange Hamiltonian in combination with
a two-step fitting procedure allows a reliable estimation of
the exchange coupling parameters in this system (for the
assumed exchange model see Figure 1b).

The experimental and theoretical analysis demonstrates
that the antiferromagnetic interactions in1 result in a total
spin S ) 1/2 cluster ground state. This can be understood
within a simple classical picture of the ground-state spin
configuration in which the spin vectors on the Mn(III) sites
and the central Mn(II) ion point up and the ones on the Mn-
(II) edge sites point down, accommodating the antiferro-
magnetic interactions best. Hence, (4× 2) + 5/2 - (4 × 5/2)
) 1/2. Thus, the grid1 is a rare example of a mesoscopic
spin-1/2 cluster, in which theS) 1/2 ground state arises from
the concerted motion of many (magnetic) electrons. The
prototypical example is the cluster V15, in which 15 electrons
couple to a (2-fold degenerate)S) 1/2 ground state.8 Another

example is the Cr7Ni molecule, in which 23 electrons act
together to yield anS) 1/2 ground state.9,10 In 1, theS) 1/2
ground state is the result of 41 electrons interacting in a
completely isotropic fashion within the antiferromagnetic grid
structure. The interest in this special class of magnetic
molecules comes from recent theoretical work, which sug-
gests that such objects might be suitable for building qubits,
the elementary building blocks in quantum computers (in
this context they have been denoted as “antiferromagnetic
cluster qubits”).11,12

Experimental Section

[Mn(III) 4Mn(II) 5(2poap-2H)6](ClO4)10‚10H2O (1) was synthe-
sized as reported.6,7 The magnetic moment of powdered and
polycrystalline samples was measured with an MPMS5 SQUID
magnetometer (Quantum Design). The polycrystalline samples were
produced by taking crystals out of the mother liquor and putting
them directly into grease, in which they were crushed. This
procedure minimizes potential problems due to drying of the sample
through solvent loss and thus yields the most reliable magnetic data.
However, the weight of the samples cannot be determined reliably,
and the data were calibrated by matching the susceptibility at high
temperatures to that of known powder samples. The accuracy of
absolute values for the molar susceptibility and magnetic moments
was estimated to be about 5%. Preliminary magnetic data were
communicated previously.6

Results and Analysis

The temperature dependence of the susceptibility, as
determined from a measurement at a field of 0.5 T, and the
magnetization curve at 2 K are shown in Figure 2. The
maximum inø(T) at about 60 K clearly indicates antiferro-
magnetic interactions in the cluster, and the strong increase
at the lowest temperatures indicates a ground state withS>
0. Theø(T) value at 250 K is 27.3 cm3 K mol-1, which is
significantly lower than that of five spin-5/2 and four spin-2
ions (33.89 cm3 K mol-1). This further demonstrates the
antiferromagnetic interactions. At low temperatures,ø(T)
approaches a value of 0.42 cm3 mol-1 indicative of anS )
1/2 ground state (0.375 cm3 K mol-1). The magnetization
curve at 2 K further supports anS ) 1/2 ground state. The
continuing rise of the magnetization at higher fields suggests
the presence of excited levels at about 10 K above the ground
state.

On the basis of the grid structure, the magnetism of1
should be well approximated by the microscopic spin
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Figure 1. (a) Structural representation of the cation in1; (b) magnetic
exchange model for1. The light-gray circles represent the spin-2 Mn(III)
ions, and the dark-gray circles represent the spin-5/2 Mn(II) ions. (c) The
classical spin configuration of theS ) 1/2 ground state in1 is shown.
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Hamiltonian

whereJR describes the next-neighbor exchange interactions
between the Mn(II) and Mn(III) ions on the grid periphery
and JC describes the interactions between the edge Mn(II)
ions and the central Mn(II) ion. TheS ) 1/2 ground state
implies that bothJR andJC are antiferromagnetic, that is,JR

< 0 andJC < 0. HereS2 ) S4 ) S6 ) S8 ) S9 ) 5/2 andS1

) S3 ) S5 ) S7 ) 2. This corresponds to a [3× 3] grid of
five Mn(II) ions and four Mn(III) ions, with the Mn(III) ions
located at the corners of the grid consistent with the structure.
The dimension of the Hilbert space of this system is as large
as 4 860 000. An exact (numerical) calculation of the energy
spectrum, as required for the calculation and interpretation
of the magnetic susceptibility data, is thus challenging, and
one has to take advantage of the symmetries of the
microscopic spin Hamiltonian as much as possible. The spin
rotational symmetry of Hamiltonian (1) allows one to work
with a spin level basis set, where each level is classified by
the quantum numbers of the total spin,S and M. For
Hamiltonian (1), the Hilbert space consists of a total of
398 400 spin levels, and the largest matrix to be diagonalized
has a dimension of 49 995 (see Table 1). This still by far
exceeds the capabilities of modern personal computers (a
memory exceeding 23 GB would be required). However, the
[3 × 3] grid structure exhibits an idealizedD4 spatial

symmetry, which manifests itself as aD4 spin permutational
symmetry of Hamiltonian (1).13 Accordingly, the basis
functions can be chosen to also transform according to the
irreducible representations A1, A2, B1, B2, and each of the
components of E of the groupD4. A numerical efficient
implementation of the spin permutational symmetry, how-
ever, is possible only for a coupling scheme of the spins
which is left invariant under the operations of the group
elements ofD4.13 In the present case, this requirement is
fulfilled, for example, forS15 ) S1 + S5, S37 ) S3 + S7,
S1357 ) S15 + S37, S26 ) S2 + S6, S48 ) S4 + S8, S2468 ) S26

+ S48, S12345678) S1357 + S2468, andS ) S9 + S12345678. The
resulting factorization of the Hilbert space is given in Table
1 (further details of the factorization procedure are given in
the Supporting Information). The dimension of the largest
matrix is now reduced to 12 486, which is still rather large
but can be well handled on present day personal computers
with 2 GB of memory storage. A single calculation for one
set of the parametersJR andJC requires about 2 days on a
modern personal computer with 2 GB of RAM.

A full least-squares fitting of the magnetic susceptibility
data, in which bothJR andJC are allowed to vary indepen-
dently, is thus unrealistic. However, it is possible within a
reasonable time frame to fit the susceptibility data with
Hamiltonian (1) for a fixed ratio ofJC/JR: The Hamiltonian
is rewritten asH ) -JR[HR + (JC/JR)HC], with obvious
meanings ofHR and HC, and the energy spectrum is
calculated forJR ) 1 and a given ratioJC/JR. The energy
spectrum for any value ofJR is then obtained by simply
scaling the calculated energy values byJR. The susceptibility
is then easily determined via the Van Vleck equation (see
eq 2; second-order terms do not appear here since an isotropic
model is considered). Thus, a best-fit value forJR can be
obtained with standard least-squares fitting routines, once
the energy spectrum for a fixed ratio ofJC/JR has been
calculated.

(13) Waldmann, O.Phys. ReV. B: Condens. Matter Mater. Phys.2000,
61, 6138.

Figure 2. The open symbols show (a) the magnetic susceptibility versus
temperature and (b) the magnetic moment versus applied field at 2 K of 1.
The solid line represents the best-fit results as calculated from Hamiltonian
(1) with the exchange parameters as indicated, and the dashed line in part
b represents the magnetization curve for anS ) 1/2 level.

H )

-JR(∑
i)1

7

Si‚Si+1 + S8‚S1) - JC(S2 + S4 + S6 + S8)‚S9 (1)

Table 1. Classification Scheme for the Mixed-Valent Manganese [3×
3] Grid 1 in theD4 Symmetry Group

S A1 A2 B1 B2 E total

1/2 2032 1990 2011 2006 4013 16065
3/2 3828 3747 3794 3781 7575 30300
5/2 5212 5095 5162 5149 10291 41200
7/2 6052 5908 5991 5969 11960 47840
9/2 6340 6174 6263 6246 12486 49995
11/2 6100 5925 6025 6000 12025 48100
13/2 5482 5302 5402 5385 10757 43085
15/2 4603 4432 4529 4506 9035 36140
17/2 3647 3485 3571 3557 7103 28466
19/2 2704 2563 2642 2625 5267 21068
21/2 1897 1772 1840 1831 3648 14636
23/2 1240 1140 1195 1185 2380 9520
25/2 768 685 727 723 1436 5775
27/2 436 376 408 404 812 3248
29/2 235 189 213 212 415 1679
31/2 113 84 99 98 197 788
33/2 53 33 42 42 80 330
35/2 20 10 15 15 30 120
37/2 8 2 5 5 8 36
39/2 2 0 1 1 2 8
41/2 1 0 0 0 0 1
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To obtain best-fit values for bothJR and JC, a two-step
procedure was followed. In the first step, the energy spectrum
was calculated for a number of values forJC/JR (specifically
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0, 3.0, and 10), and the
susceptibility data were least-squares fitted to the model

Here, the three parametersJR, g, andø0 were allowed to vary
independently. In eq 2, the sum runs over all spin levels,
numbered bySandR, andESR

0 refers to the energies of the
spin levels for a given value ofJC/JR. The constantø0

accounts for a small diamagnetic background due to the
grease in the sample. Plotting the goodness-of-fit (GOF)
parameterø2 as function ofJC/JR then reveals a best-fit value
for JC/JR. This way one obtains the best-fit values forJR

andJC independently. To estimate their confidence limits, it
is necessary, in a second step, to again least-squares-fit the
data for each ratioJC/JR but now with the parametersg and
ø0 set to their best-fit values (g ) 2.11 andø0 ) -0.006
cm3 mol-1: it is remarked that the absolute value of theg
factor is of little significance in view of the 5% accuracy of
the data calibration).14

The GOF parameterø2 as function ofJC/JR is shown in
Figure 3a. Theø2 does not exhibit a simple parabolic

dependence, as expected for a Gaussian statistical analysis,
but instead shows a more troughlike behavior with a
“bottom” reaching fromJC/JR ≈ 0.3 to about 0.8. The
standard procedure of calculating estimated standard devia-
tions (esds) is related to the curvature of the parabola
approximating theø2 behavior near the minimum.14 Since
the curvature at the bottom is very small, the resulting
calculated esds are ridiculously large and thus do not provide
reliable estimators for the confidence limits. To give an
impression of what theø2 values refer to, the corresponding
susceptibility curves are drawn for some of the ofJC/JR ratios
in Figure 3b. Forø2 values outside the trough, the suscep-
tibility curves clearly deviate from the experimental data,
but for JC/JR values within the trough, the curves are
statistically indistinguishable. Accordingly,JC/JR )
0.55(10) is estimated, and with the best-fit value ofJR )
-12 K for this ratio, this finally translates into

The susceptibility curve corresponding to these values (and
theg andø0 values given above) reproduces the experimental
data very well (see Figure 2a).

For an isotropic Hamiltonian, such as Hamiltonian (1),
the magnetic moments for arbitrary temperature and magnetic
fields can also be calculated exactly from the zero-field
energy spectrum,13

whereBS(y) is the Brillouin function,x ) µBB/(kBT) andESR
denotes the energy levels (in this workESR ) JRESR

0). It is
easily confirmed that forB f 0, eq 4 reduces to the Van
Vleck equation for the susceptibility. Equation 4 enables the
calculation of the magnetization curve, and the result is in
excellent agreement with experiment (Figure 2b). The
calculated energy spectrum yields anS) 1/2 ground state of
the cluster, in agreement with the data, and anS) 3/2 level
at 9.5 K, which explains the upturn of them(B) curve at
higher fields. Thus, as a conclusion, the obtained best-fit
values reproduce the magnetism of1 very well. With a
Hilbert space of dimension 4 860 000, this is to date by far
the largest system for which a full quantum mechanical
analysis of the magnetization curves could be achieved.

On general grounds it cannot be assumed that magnetic
anisotropy terms in the microscopic spin Hamiltonian, for
instance due to ligand-field or dipole-dipole interactions,
are negligible.3,15 However, in the present case their effects
are hardly seen in measurements on powder (or polycrys-
talline) samples. On one hand, effects of the anisotropy are
detectable only at the lowest temperatures, since at higher
temperatures, as soon as an appreciable number of levels

(14) Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; Vetterling, W. T.
Numerical Recipes. The Art of Scientific Computing;Cambridge
University Press: Cambridge, U.K., 1986.

(15) Waldmann, O.; Zhao, L.; Thompson, L. K.Phys. ReV. Lett.2002, 88,
066401.

Figure 3. (a) GOF parameterø2 as function of the ratioJR/JC (for details
see text); (b) comparison of the experimentalø(T) curve (circles) with the
best-fit results for the indicated values ofJR/JC (solid lines).

JR ) -12(1) K JC ) -6.5(10) K (3)

m(T,B) )

µBg

∑
SR

SBS(gSx) sinh[g(S+ 1/2)x] exp[-ESR/(kBT)]

∑
SR

sinh[g(S+ 1/2)x] exp[-ESR/(kBT)]

(4)

ø(T) )

NAµB
2g2

3kBT

∑
SR

(2S+ 1)S(S+ 1) exp[-JRESR
0/(kBT)]

∑
SR

(2S+ 1) exp[-JRESR
0/(kBT)]

+ ø0 (2)
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become thermally populated, the anisotropy effects average
out. On the other hand, theS) 1/2 ground state of1 cannot
exhibit a zero-field-splitting, that is, the anisotropy is not
effective in the ground state. In our opinion, this explains
why the simple isotropic Hamiltonian (1) manages to
reproduce well both the susceptibility and the magnetization
curve.

Discussion

It is interesting to inspect the calculated energy spectrum
for 1. The full spectrum, as a function ofS, is shown in
Figure 4a, and a more detailed view of the low-energy part
is provided in Figure 4b. As mentioned already, the ground
state belongs toS ) 1/2, followed by anS ) 3/2 state at 9.5
K. The higher-lying levels show a remarkable but well-
known structure,2,4,16,17where the lowest states for eachS
exhibit a quadratic increase of energy∝ S(S+ 1), which is
characteristic for rotational bands. The lowest rotational band
of states is known as the L band or “tower of states”.
Furthermore, the next-higher lying states above the L band
form another set of rotational bands, also showing the typical
S(S+ 1) increase in energy. This set of rotational bands has
been collectively denoted as the E band.

A comparison shows that the spectrum of1 looks very
similar to that of the antiferromagnetic wheels or the
“original” Mn(II)-[3 × 3] grid.2,4,17 In fact, its low-lying
energy levels exhibit all the characteristic features found in

these systems. The main difference is that in1 the L band
starts fromS) 1/2, whereas it starts fromS) 0 in the case
of the wheels andS) 5/2 in the case of Mn(II)-[3× 3]. The
similarity has the important implication that the spin dynam-
ics and elementary magnetic excitations, respectively, in1
are explained by the same physical picture as in the wheels
and Mn(II)-[3× 3].2,4 In this picture, the L band corresponds
to the (quantized) rotation of the Ne´el vector, and the E band
corresponds to the (quantized) spin-wave excitations. It has
become clear in recent years that this structure of the low-
energy part of the spectrum is intimately connected to a
“classical” spin structure.2,4,17Indeed, theS) 1/2 ground state
can be easily rationalized by the classical spin configuration
shown in Figure 1c.

These considerations implicitly demonstrate that the spin
dynamics in1 at the lowest temperatures are well described
in terms of a Ne´el vector (the Ne´el vector is simply a vector
which is parallel to the magnetization of one of the
antiferromagnetic sublattices, e.g., to the up-pointing spins
in Figure 1c). Thus, if the magnetic anisotropy is of the easy-
axis type and large enough, and the Mn(III) ions are known
to be good sources for easy-axis magnetic anisotropy,1
would be in the regime of quantum tunneling of the Ne´el
vector.18,19 A careful determination of the magnetic anisot-
ropy of 1 will be thus of high interest. As an additional
comment, the classical spin structure also ensures that the
effective (three-sublattice) spin Hamiltonian

developed for the Mn(II)-[3× 3] grid works well also for
1.19 In eq 5, A and B refer to the two magnetic sublattices
formed by the edge and corner spins, that is,SA ) S1357, SB

) S2468 (whereSA andSB assume their maximal valuesSA

) S1 + S3 + S5 + S7, SB ) S2 + S4 + S6 + S8; thereforeSA

) 8 andSB ) 10 for 1). Physically, this means that the low-
energy dynamics corresponds to a motion in which the spins
on each of the sublattices A and B act as a single, larger
spin.

It is also interesting to look at1 from another perspective,
which is suggested by itsS) 1/2 ground state. A spin-1/2 is
a natural candidate for a quantum bit (qubit), the basic
element of a quantum computer. However, among the many
obstacles to be overcome in the realization of a quantum
computer is the problem of addressing the qubit, which is a
prerequisite for its initialization and read-out. For conven-
tional spin-1/2 systems, in which the spin-1/2 arises from one
unpaired electron, addressing is extremely difficult because
of the typical smallness of the objects. However, recently it
has been argued that mesoscopic spin-1/2 systems, in which
the spin-1/2 arises from the concerted action of many electrons
(41 in the case of1), might be good candidates for producing
qubits (then called cluster qubits), because their larger
physical size simplifies the task of addressing accordingly.11

A molecule discussed much in this context is the Cr7Ni
wheel.9-12 In this wheel, the eight metal centers are arranged

(16) Schnack, J.; Luban, M.Phys. ReV. B: Condens. Matter Mater. Phys.
2001, 63, 014418.

(17) Waldmann, O.Phys. ReV. B: Condens. Matter Mater. Phys.2002,
65, 024424.

(18) Chiolero, A.; Loss, D.Phys. ReV. Lett. 1998, 80, 169.
(19) Waldmann, O.Phys. ReV. B: Condens. Matter Mater. Phys.2005,

71, 094412.

Figure 4. Energy spectrum versus total spin quantum numberS as
calculated from Hamiltonian (1) with the parameters indicated in the
panels: (a) full energy spectrum; (b) detailed view on the low-energy sector,
highlighting the L band ()̂ quantized rotation of the Ne´el vector) and E
band ()̂ quantized spin wave excitations).

HAB9 ) -J′RSA‚SB - J′CSB‚S9 (5)
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as an almost perfect ring and exhibit next-neighbor antifer-
romagnetic interactions. Because of the smaller spin of the
Ni(II) ion (spin-1) as compared to the Cr(III) centers (spin-
3/2), the ground-state spin configuration is not fully com-
pensated, resulting in anS ) 1/2 ground state. The next-
higher lying state, anS ) 3/2 level, is at about 13 K above
the ground state. Detailed numerical calculations and theo-
retical considerations have shown that theS ) 1/2 cluster
ground state of Cr7Ni indeed may provide a qubit, that is,
that the leakage to the nearbyS) 3/2 levels is small enough,
et cetera.12

The above discussion has shown that the classical spin
structure in1 also means that the effective three-sublattice
spin Hamiltonian concept describes the low-lying excitations
well. Furthermore, in ref 19 it has been demonstrated that
for JC J 0.01JR the sublattice spinSB and the central spinS9

are so strongly coupled that they act as a combined spin. As
a result, the three-sublattice spin Hamiltonian can be further
reduced to another effective spin Hamiltonian, which is
exactly the effective spin Hamiltonian of a modified anti-
ferromagnetic wheel. Thus, magnetically,1 behaves at low
temperatures exactly like a modified wheel with anS ) 1/2

ground state, that is, like Cr7Ni. Also the energy gaps to the
next-higher lyingS ) 3/2 are on the same order (9.5 K in1
and 13 K in Cr7Ni). The considerations drawn for Cr7Ni in
the context of the applicability as cluster qubits12 thus are
valid also for1. In short, the mixed-valent manganese [3×
3] grid 1 might be another system with significant potential
as a cluster qubit. Recently, it has been shown that suitably
functionalized manganese [3× 3] grids can be organized in
monolayers of surface-bound molecules onto substrates, for
example, Au(III), and can be individually addressed by
scanning probe techniques,6 overcoming another prerequisite
for their application.
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